Part 1: Dynamics



Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005) Nonlinear dynamics and chaos, Steven H. Strogatz (1994) Mathematical Models in Biology, Leah Edelstein-Keshet (1988)

01\_Dynamics.psd

## **Expansion of Regions After Each Cycle**



Any small error in the measurement of the current state (inevitable) eventually leads to total ignorance of the position of the trajectory within the chaotic attractor.

#### Lyapunov Exponent

The Lyapunov exponent is a measure of how much two neighboring initial points will diverge in the dynamics flow.

**1-dimensional system**: an initial separation,  $\Delta x_0$ . The separation at a much later time will be given by

$$\Delta x_t = \Delta x_0 e^{\lambda t}$$

Where the Lyapunov exponent of the system is defined by

$$\lambda = \lim_{t o \infty} \ln(\Delta x(t))$$
Typo?

and  $\Delta x(t)$  is the average deviation apperturbed trajectory.

(\frac{\Dx\_t}{\Dx\_0} ?)

03a\_LyExp.psd

#### Lyapunov Exponent for the Logistic Map

$$x_{n+1} = ax_n(1 - x_n)$$



#### Lyapunov's Stability Theorem

To show that a system is stable, construct a Lyapunov function.

Lyapunov's stability theorem: If there is a Lyapunov function *V* such that:

 $\dot{x} = f(x)$  with  $x \in \mathbb{R}^n$  and  $f(\bar{x}) = 0$ ,  $\bar{x}$  is a fixed point.

 $V: \mathbb{R}^n \to \mathbb{R}$  is a  $C^2$  function defined on some neighborhood U of  $\bar{x}$ .

$$V(\bar{x}) = 0$$
 and  $V(x) > 0 \ \forall x \in (U - \bar{x}).$ 

$$\dot{V} \le 0 \ \forall x \in (U - \bar{x})$$

then  $\bar{x}$  is stable.

If  $\dot{V} < 0 \ \forall x \in (U - \bar{x})$ , then  $\bar{x}$  is asymptotically stable.

(from Andy Fraser's notes)

04\_LyapunovFun.psd



05\_LyapunovLorenz.psd

# **Lyapunov Function for Gradient Systems**

$$\dot{x} = -\frac{\partial V}{dx}$$
 and  $\dot{y} = -\frac{\partial V}{dy}$ 

07\_LyapunovGradient.psd

#### Why study gradient systems?

- Especially "easy" systems to study.
   A generalization of one-dimensional flows.
- Historically important (physics).
   Many laws of physics can be expressed as gradient systems.
- 3. Advantagous for applications in optimization problems. Convergence theorems for optimization proceedures.



#### **Gradient Systems: Gradient of a Potential Functions**

Vector fields associated to a scalar potential:  $V:\mathbb{R}^n \to \mathbb{R}$ 

$$\frac{d}{dt}\vec{x} = \vec{f}(x) = -\nabla V(x)$$

The gradient is the maximal directional derivative:  $\nabla V(x) = \int_{0}^{\infty} dx$ 

$$\begin{bmatrix} \partial/\partial x_1\\ \partial/\partial x_2\\ \vdots\\ \partial/\partial x_N \end{bmatrix} V(x)$$



 $13\_WhatGradientSys.psd$ 

## Geometry of Gradient Systems: 1-Dimension



## Attractor versus Repeller: Second Derivative at Fixed Point

The Hessian of the potential at each fixed point

$$H_{i,j}(x) \equiv rac{\partial^2}{\partial x_i \partial x_j} V(x) igg|_{x=x_0}$$

determines whether the fixed point is an attractor or repeller:



15\_criticalValue.psd



16\_gradient\_test.psd

# **Gradient Systems: Level Sets**



Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)

17\_levelSets.psd

# **Gradient Systems: Forces from Potential Function**





19\_gradient\_test2.psd

# **Gradient Systems: No Closed Orbits**

The Jacobian of the dynamical system,

$$\frac{d}{dt}\vec{x} = \vec{f}(\vec{x}) = -\nabla V(\vec{x})$$

is the Hessian of the potential:

$$H_{i,j}(x) \equiv \frac{\partial^2}{\partial x_i \partial x_j} V(x)$$

Then the Jacobian is symmetric, and the eigenvalues are real.



# **Bifurcations in 1-Dimensional Gradient Systems**



Dynamical Systems in Neuroscience (2006) E.M. Izhikevich

20\_1dBifur.psd

# **Bifurcations in 1-Dimensional Gradient Systems**



Dynamical Systems in Neuroscience (2006) E.M. Izhikevich

### **Bifurcations in 1-Dimensional Gradient Systems**



Dynamical Systems in Neuroscience (2006) E.M. Izhikevich

22\_1dBifur.psd

## **Elementary Catastrophes: Fold**



## **Elementary Catastrophes: Fold**



Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)

23b\_fold2.psd

# Elementary Catastrophes: 2-D Fold Saddle-Node Bifurcation





25a\_fold.psd

# The First Seven Elementary Catastrophes

|                 |        |       |                                                                 | <u>-</u>           |
|-----------------|--------|-------|-----------------------------------------------------------------|--------------------|
| Germ            | Corank | Codim | Universal Unfolding                                             | Name               |
| $x^3$           | 1      | 1     | $x^3 + ux$                                                      | Fold               |
| $x^4$           | 1      | 2     | $x^4 + ux^2 + vx$                                               | Cusp               |
| $x^5$           | 1      | 3     | $x^5 + ux^3 + vx^2 + wx$                                        | Swallowtail        |
| $x^6$           | 1      | 4     | $x^{6} + ux^{4} + vx^{3} + wx^{2} + tx$                         | Butterfly          |
| $x^{3} + y^{3}$ | 2      | 3     | $x^3 + y^3 + uxy + vx + wy$                                     | Hyperbolic umbilic |
| $x^3 - xy^2$    | 2      | 3     | $x^{3} - xy^{2} + \underbrace{u(x^{2} + y^{2}) + vx + wy}_{-1}$ | Elliptic umbilic   |
| $x^{2} + y^{4}$ | 2      | 4     | $x^{2}y + y^{4} + ux^{2} + vy^{2} + wx + ty$                    | Parabolic umbilic  |



http://www-wales.ch.cam.ac.uk/~tvb20/elcat.htm



31\_hamiltonian.psd

Part 1: Dynamics

Jan 10 (01) 2-Dimensional flow geometries. HW1



Jan 12 (02) Discrete dynamics & Mappings.

Jan 17 (03) Diagonalization & eigenvalues. HW2



Jan 19 (04) Higher dimensional dynamics & linearization.

Jan 24 (05) Stability & Gradient systems. HW3



Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005) Nonlinear dynamics and chaos, Steven H. Strogatz (1994) Mathematical Models in Biology, Leah Edelstein-Keshet (1988)