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Part 1: Dynamics

Jan 10 (01) 2-Dimensional flow geometries. HW1 NN i

Jan 12 (02) Discrete dynamics & Mappings.

Jan 17 (03) Diagonalization & eigenvalues. HW2

Jan 19 (04) Higher dimensional dynamics & linearization.
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Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
Nonlinear dynamics and chaos, Steven H. Strogatz (1994)
Mathematical Models in Biology, Leah Edelstein-Keshet {1988)
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01_Dynamics.psd

Expansion of Regions After Each Cycle
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Any small error in the measurement of the current state (inevitable)
eventually leads to total ignorance of the position of the trajectory within the
chaotic attractor.

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
02_RosslerExpand.psd
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03a_LyExp.psd

Lyapunov Exponent

The Lyapunov exponent is a measure of how much two neighboring
initial points will diverge in the dynamics flow.

1-dimensional system: an initial separation, Azy.
The separation at a much later time will be given by

Az, = Azge™

Where the Lyapunov exponent of the system is defined by

and Az(t) is the average deviatiQ perturbed trajectory.

(\frac{\x_t}{\Dx_O} ?)

Lyapunov Exponent for the Logistic Map

Tpy1 = azy(l — x,)

Normalized Lyapunov exponent

Tng

0.5+

<http./fcourses.physics.kth.se/5A1352/~

03b_LyExpLogistic.psd
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Lyapunov’s Stability Theorem

To show that a system is stable, construct a Lyapunov function.
Lyapunov’s stability theorem: If there is a Lyapunov function V such that:
& = f(z) with z € R* and f(z) =0, Z is a fixed point.
V :R™ — R is a C? function defined on some neighborhood U of z.

V(z)=0and V(z) >0Vz € (U — ).
V<0Vze (U-z)

then z is stable.

If V <0Vze (U-z),then z is asymptotically stable.

(from Andy Fraser’s notes)
04_LyapunovFun.psd

Lyapunov Function

05_LyapunovLorenz.psd
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Lyapunov Function for Gradient Systems

07 _LyapunovGradient.psd

Why study gradient systems?

1. Especially “easy” systems to study.
A generalization of one-dimensional flows.

2. Historically important (physics).
Many laws of physics can be expressed as gradient systems.

3. Advantagous for applications in optimization problems.
Convergence theorems for optimization proceedures.
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12_WhyGradientSys.psd
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Gradient Systems: Gradient of a Potential Functions

Vector fields associated to a scalar potential: V' : R* — R

%5 = flz) = -VV(z)

0/0,
0/0ws

The gradient is the maximal directional derivative: VV'(z) =

.| V(@)
0/0zx

Sxy)=ysinx

13_WhatGradientSys.psd

14_1D_levelSets.psd
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Attractor versus Repeller: Second Derivative at Fixed Point

The Hessian of the potential at each fixed point

" Y

Hij(z) = 0z;0z;
i 7 T=Tp

determines whether the fixed point is an attractor or repeller:

L L

1 1

My My
ATTRACTOR REPELLOR

15_criticalValue.psd

Test for Gradient System

16_gradient_test.psd
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Gradient Systems: Level Sets

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
17_levelSets.psd

Gradient Systems: Forces from Potential Function

ok

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
18_potential.psd
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Curl-free versus Rotating Fields

http://www.falstad.com/vector/

19_gradient_test2.psd

Gradient Systems: No Closed Orbits
The Jacobian of the dynamical system,

dt
is the Hessian of the potential:
52
H;i(z) = Viz
Isj( ) 8']’3;83} ( )

Then the Jacobian is symmetric, and the eigenvalues are real

hY -

portrait CE

oorirail CE.

19_NoClosedOrbits.psd



SySc 512 Slides 04/16/07

Bifurcations in 1-Dimensional Gradient Systems

4 c(b)<0

Dynamical Systems in Neuroscience (2006) E.M. 1zhikevich
20_1dBifur.psd

Bifurcations in 1-Dimensional Gradient Systems

4 c(b)>0

Dynamical Systems in Neuroscience (2008) E.M. lzhikevich
21_1dBifur.psd
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Bifurcations in 1-Dimensional Gradient Systems

X X
+pla NStablg

stable .| unstable stable

-Jb/a pstad'e

supercritical pitchfork, a < 0

Dynamical Systems in Neuroscience (2006) E.M. 1zhikevich
22_1dBifur.psd

Elementary Catastrophes: Fold

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
23a_fold.psd
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Elementary Catastrophes: Fold
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Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
23b_fold2.psd

Elementary Catastrophes: 2-D Fold
Saddle-Node Bifurcation
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Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
24_2D_fold.psd
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Elementary Catastrophes: 2-D Fold
Saddle-Node Bifurcation

25a_fold.psd

The First Seven Elementary Catastrophes

Germ Corank |C0dim Universal Unfolding Name
3 _
? 1 1 ™ +ur Fold
o 1 2 |2t +uz® +uz Cusp
| . ) 3 2 " [ .
25 ! 3|2 +ur +ua® +wr Swallowtail
26 1 4 2% +urt +vzd +we +tx Buterfly
©® + 4P 2 3 |2® + 1 +usy +vrtwy Hyperbolic umbilic
Pzt | 2 3 |2 -mf+ =Ixtr2 +y*) + vz + wy | Elliptic umbilic
[ 2 4 [ 2 g 2 2 5 g . i
r©+y 2 4 |Fy+y tur +vy +wr+ty | Parabolic umbilic
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Fold Cusp Suallowtail

http://iwww-wales.ch.cam.ac.uk/~tvb20/elcat htm
30_unfoldings.psd
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Hamiltonian Systems

31_hamiltonian.psd

Part 1: Dynamics

Jan 10 (01) 2-Dimensional flow geometries. HW1
Jan 12 (02) Discrete dynamics & Mappings. o

Jan 17 (03) Diagonalization & eigenvalues. HW2

Jan 19 (04) Higher dimensional dynamics & linearization.

Jan 24 (05) Stability & Gradient systems. HW3
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Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
Nonlinear dynamics and chaos, Steven H. Strogatz (1994)
Mathematical Models in Biology, Leah Edelstein-Keshet (1988)

32_Dynamics.psd



