Part 1: Dynamics

Jan 10 (01) **2-Dimensional flow geometries**. HW1

Jan 12 (02) Discrete dynamics & Mappings.

Jan 17 (03) Diagonalization & eigenvalues. HW2

Jan 19 (04) Higher dimensional dynamics & linearization.

Jan 24 (05) Stability & Gradient systems. HW3

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005) Nonlinear dynamics and chaos, Steven H. Strogatz (1994) Mathematical Models in Biology, Leah Edelstein-Keshet (1988)

01_Dynamics.psd

Quantify a System's Dynamics: Step #4: Classify the Dynamics

The Classification of 2-Dimensional Dynamics

Piexoto's Theorem

Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)

03_Piexoto.psd

The Linearize near the Fixed Points

Given a dynamical system,

$$\frac{d}{dt}\vec{x} = f(\vec{x})$$

The fixed points are all points that satisfy the condition,

$$f(\vec{x}_0) = 0$$

Taylor expand near the fixed points:

$$f(\vec{x}) = f(\vec{x}_0) + (\vec{x} - \vec{x}_0)f'(\vec{x})|_{\vec{x} = \vec{x}_0} + \frac{1}{2}(\vec{x} - \vec{x}_0)^2 f''(\vec{x})|_{\vec{x} = \vec{x}_0} + \cdots$$

In the 2-dimensional case, $\vec{x} = (x, y)$

$$\begin{bmatrix} f_x(x,y) \\ f_y(x,y) \end{bmatrix} \approx \begin{bmatrix} \frac{df_x}{dx} & \frac{df_x}{dy} \\ \frac{df_y}{dx} & \frac{df_y}{dy} \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$$

Find eigenvalues of Jacobian

Why do we expand? "Because it's what we do." -Per Salomonson

Geometrically: Eigenvectors for Orthonormal Basis

05_evals.psd

2-Dimensional Linear Systems

$$\frac{dx}{dt} = a_1 x + a_2 y + b_1 \qquad \frac{dy}{dt} = a_3 x + a_4 y + b_2$$

· Can be written as:

$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$\frac{d\vec{X}}{dt} = \vec{A}\vec{X} + \vec{B}$$

Equilibrium: Fixed Points

• Equilibrium points occur when the temporal derivative is 0, which defines equilibrium solutions \vec{X}_{ea}

$$\frac{d\vec{X}}{dt} = \vec{A}\vec{X} + \vec{B} = 0 \qquad \overrightarrow{X}_{eq} = -\vec{A}^{-1}\vec{B}$$

- A trajectory is the time course of the system given a particular set of initial conditions
- We can characterize a system by the behavior of its trajectories in the vicinity of the equilibrium points

12/16/05 SySc 512 2

Slide02.png

Stability and state space

- We can plot trajectories in state space (also called the phase plane) in which the variables of our equations define the axis
- Then, the plots of dx/dt=0 and dy/dt=0 are called nullclines, and their intersection point represents the equilibrium state of the system

$$\frac{dx}{dt} = a_1 x + a_2 y + b_1$$

$$\frac{dy}{dt} = a_3 x + a_4 y + b_2$$

 $\frac{y}{\sqrt{\frac{x}{dt}}} = 0$ SySc 512

12/16/05

3

Stability and state space (cont.)

- The equilibrium point is asymptotically stable if all trajectories starting within a region containing the equilibrium point decay exponentially towards that point
- The equilibrium point is unstable if at least one trajectory beginning in a region containing the point leaves the region permanently
- The equilibrium is (neutrally) stable if trajectories remain nearby
- The behavior of trajectories can be determined by the eigenvalues of the system

12/16/05 SySc 512

Slide04.png

Linear (Local) Stability

- The behavior of trajectories can be determined by the eigenvalues of the system
- We can transform the system steady state to the origin without changing the dynamics by setting

$$\vec{X}' = \vec{X} - \vec{X}_{ea}$$

• So that
$$\frac{d\vec{X}'}{dt} = \vec{A}\vec{X}'$$

$$\frac{d\vec{X}}{dt} = \vec{A}\vec{X} + \vec{B}$$

Linear Solution in 2-Dimensions

Now, substitute a vector of exponentials for X with arbitrary (to be determined) coefficients c and d:

$$\vec{X}' = \begin{pmatrix} ce^{\lambda t} \\ de^{\lambda t} \end{pmatrix} = \vec{v}e^{\lambda t}$$

 $\vec{X}' = \begin{pmatrix} ce^{\lambda t} \\ de^{\lambda t} \end{pmatrix} = \vec{v}e^{\lambda t}$ The λ 's are the eigenvalues of the system, and the v's are the eigenvectors.

6

So,

$$\frac{d\vec{X}'}{dt} = \underline{\lambda}\vec{X}' = \vec{A}\vec{X}' \longrightarrow \left\{ \vec{A} - \lambda \vec{I} \right\} \vec{X}' = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

12/16/05 SySc 512

Slide06.png

Characteristic Equation

$$\left\{ \vec{A} - \lambda \vec{I} \right\} \vec{X}' = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

has a non-trivial solution only if

$$\left\{ \ddot{A} - \lambda \ddot{I} \right\}$$

does not have an inverse – which means the determinant vanishes

$$\left| \vec{A} - \lambda \vec{I} \right| = 0$$

The determinant is simply a quadratic polynomial which is the characteristic equation of the system

$$\begin{pmatrix} a_1 - \lambda & a_2 \\ a_3 & a_4 - \lambda \end{pmatrix} = 0 \qquad remember this? \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

12/16/05 SySc 512 7

Eigenvalues and Eigenvectors

The solutions of the characteristic equation are called *eigenvalues* of A If the eigenvalues are not equal $(\lambda_1 \neq \lambda_2)$ then the solution of our original system

$$\frac{d\vec{X}}{dt} = \vec{A}\vec{X} + \vec{B}$$

is:

$$\vec{X} = \begin{pmatrix} c_1 e^{\lambda_1 t} \\ d_1 e^{\lambda_1 t} \end{pmatrix} + \begin{pmatrix} c_2 e^{\lambda_2 t} \\ d_2 e^{\lambda_2 t} \end{pmatrix} + \vec{X}_{eq}$$

So, we only need to determine the *c's* and *d's* (the eigenvectors) to determine the solution for the system of equations

12/16/05 SySc 512 8

Slide08.png

Solution in New Coordinates

To find the solution for X (i.e. find the *c*'s and *d*'s), we substitute in our eigenvalue(s)

$$\lambda \vec{X}' = \vec{A} \vec{X}' \qquad \lambda_1 \begin{pmatrix} c_1 e^{\lambda_1 t} \\ d_1 e^{\lambda_1 t} \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} c_1 e^{\lambda_1 t} \\ d_1 e^{\lambda_1 t} \end{pmatrix}$$
$$\lambda_2 \begin{pmatrix} c_2 e^{\lambda_2 t} \\ d_2 e^{\lambda_2 t} \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} c_2 e^{\lambda_2 t} \\ d_2 e^{\lambda_2 t} \end{pmatrix}$$

Note: we must know the initial conditions to fully determine the *c's* and *d's*

Stability of Spirals

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues are a complex conjugate pair: equilibrium point is a spiral point.

If the real part of the eigenvalues are negative, the point is asymptotically stable

Otherwise, it's unstable

10

12/16/05 SySc 512

Slide10.png

Stable Fixed Points are Sinks

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues are both real and have the same sign: equilibrium point is a node.

If the eigenvalues are negative, the point is asymptotically stable

Otherwise, it's unstable

Saddle Points are Stable & Unstable

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues are both real and have different signs: equilibrium point is a saddle point.

Saddle points are always unstable

12/16/05 SySc 512 12

Slide12.png

Purely Imaginary Eigenvalues

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues are purely imaginary: equilibrium point is a center.

Centers are neutrally stable, and the trajectory around the equilibrium point will be strictly periodic oscillations

Non-linear Systems

However, for a general system

$$\frac{du}{dt} = F(u, w) \qquad \frac{dw}{dt} = G(u, w)$$

We can learn a lot about the equilibrium of the system by studying the stability of the steady states (i.e. the temporal equilibrium points):

$$\frac{du}{dt} = 0 \qquad \frac{dw}{dt} = 0$$

12/16/05 SySc 512 14

Slide14.png

Non-linear Systems

Again, we do Phase Plane analysis

 $\frac{du}{dt} = 0$ u-nullcline $\frac{dw}{dt} = 0$ w-nullcline

fixed points = equilibrium points

15

Non-linear Systems

 We can solve for equilibrium points, but in this case we have non-linear functions, so how do we determine the eigenvalues?

...use the linear terms of the Taylor series expansion around the equilibrium points

$$\frac{d}{dt} \begin{pmatrix} u \\ w \end{pmatrix} = \begin{pmatrix} \frac{\partial F}{\partial u} \Big|_{eq} & \frac{\partial F}{\partial w} \Big|_{eq} \\ \frac{\partial G}{\partial u} \Big|_{eq} & \frac{\partial G}{\partial w} \Big|_{eq} \end{pmatrix} \begin{pmatrix} u \\ w \end{pmatrix}$$
Matrix of first derivatives:

Jacobian matrix

12/16/05

Slide16.png

Example

 Consider a very simple Wilson-Cowan system of 2 neuron populations:

$$\tau \frac{dE(x)}{dt} = -E(x) + g_{E} \left[I^{ext} + w_{EE} E(x) - w_{IE} I(x) \right]$$

$$\tau \frac{dI(x)}{dt} = -I(x) + g_{I} \left[w_{EI} E(x) \right]$$

$$g(P) = \begin{cases} \frac{100P^{2}}{30^{2} + P^{2}} & for \ P \ge 0 \\ 0 & for \ P < 0 \end{cases}$$

Example (cont.)

Slide18.png

Limit cycles

- An oscillatory trajectory is a *limit cycle* if all trajectories within a small region enclosing the oscillatory trajectory are spirals
 - If neighboring trajectories spiral towards the oscillatory trajectory, then the limit cycle is asymptotically stable
 - If they spiral away, the limit cycle is unstable
- Poincaré-Bendixon theorem:
 - Suppose there is an annular region that contains no equilibrium points and for which all trajectories that cross the boundary of the annulus enter it
 - Then, the annulus must contain at least one asymptotically stable limit cycle

One-Dimension
Eigenvalues (Characteristic Exponents) Determine Source/Sink

06_1Dim.psd

Two-Dimensions
Imaginary Parts of Eigenvalues Determine Spirals

Two-Dimensions Eigenvalues Determine the Geometry of Flows

08_peixoto.psd

Great Graph of 2-d Linear Systems

general 2×2 matrix $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with trace T=a+d and determinant D=ad-cb: $\det\begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix}=\lambda^2-T\lambda+D=0, \ \text{the solutions of which are: } \lambda=\frac{T\pm\sqrt{T^2-4D}}{2}.$

D < 0: Saddle. One real positive eigenvalue and one real negative eigenvalue.

Fraser's notes (2004)

Structural Stability
Flow Geometry is Not Sensitive to Small Perturbations

09_StructStabil.psd

Bifurcations
Parameter Changes that Change Flow Geometry

Saddle-node bifurcation

11a_bifur_saddle-node.mov

Bifurcations
Parameter Changes that Change Flow Geometry

Saddle-node bifurcation

12a_bifur_saddle-nod#19D060.mov

13a_bifur_hopf.mov

Bifurcations
Parameter Changes that Change Flow Geometry

Hopf bifurcation

13b_Hopf.psd

Summary: Eigenvalues Determine Flow Geometries

Classify the Dynamics: 1. Find the fixed points.

- 2. Linearize near the fixed points.
- 3. Compute eigenvalues at fixed points.
- 4. Classify local stability.
- 5. Classify bifurcations.

