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Part 1: Dynamics

Jan 10 (01) 2-Dimensional flow geometries. HW1 N 'l'_; = e
Jan 12 (02) Discrete dynamics & Mappings. <i?;‘;fu\ |
L2 |

Jan 19 (04) Higher dimensional dynamics & linearization.

Jan 24 (05) Stability & Gradient systems. HW3
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Dynamics: The Geometry of Behavior, Ralph Abraham and Ch
Nonlinear dynamics and chaos, Steven H. Strogatz (1994)

Mathematical Models in Biology, Leah Edelstein-Keshet {1988)

1 2 a4 o 1
ris Shaw (2005)
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Quantify a System’s Dynamics:
Step #4: Classify the Dynamics
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The Classification of 2-Dimensional Dynamics
Piexoto’s Theorem
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Dynamics: The Geometry of Behavior, Ralph Abraham and Chris Shaw (2005)
03_Piexoto.psd

The Linearize near the Fixed Points

Given a dynamical system, /4
& =J(@)

The fixed points are all points that satisfy the condition,
f(@o) =0
Taylor expand near the fixed points:
— —* — —* —* 1 — — —
(@) = f(@o) + (F = Z0) /' (@) |z=s, + 5(& — 70)* " (&) la=zs + -
In the 2-dimensional case, Z = (z, y)
df:  dfs
[fx(&‘:, y)} ~ |E 9 [ - :s]

fu(z,y) D Bl {y—wo

Find eigenvalues of Jacobian

Why do we expand? “Because it's what we do.” -Per Salomonson

04_linearize.psd
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Geometrically: Eigenvectors for Orthonormal Basis
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2-Dimensional Linear Systems

dx dy
—=ax+a,y+b — =a.x+a,v+b
i 1 2V T 0 i 3 4y T 0,

* Can be written as:

d (x a, a,\x b,

—| |= +

dt\y a, a,)\y| \b,
dX -

= - AX+B
dt
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Equilibrium: Fixed Points

« Equilibrium points occur when the temporal derivative is
0, which defines equilibrium solutions X,

”ﬁl—X=}1)?+é=o — X,--4"B
t

» A trajectory is the time course of the system given a
particular set of initial conditions

» We can characterize a system by the behavior of its
trajectories in the vicinity of the equilibrium points
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Stability and state space

» We can plot trajectories in state space (also called the
phase plane) in which the variables of our equations
define the axis

» Then, the plots of dx/dt=0 and dy/dt=0 are called
nullclines, and their intersection point represents the
equilibrium state of the system
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Stability and state space (cont.)

» The equilibrium point is asympftotically stable if all
trajectories starting within a region containing the
equilibrium point decay exponentially towards that point

* The equilibrium point is unstable if at least one trajectory
beginning in a region containing the point leaves the
region permanently

* The equilibrium is (neutrally) stable if trajectories remain
nearby

* The behavior of trajectories can be determined by the
eigenvalues of the system
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Linear (Local) Stability

» The behavior of trajectories can be determined by the
eigenvalues of the system

* We can transform the system steady state to the origin
without changing the dynamics by setting

* So that e
o tha dX i
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Linear Solution in 2-Dimensions

* Now, substitute a vector of exponentials for X with
arbitrary (to be determined) coefficients ¢ and d:

-, CeM Y The N's are the eigenvalues of
X = L | =ve the system, and the v’s are the
de eigenvectors.

* So,
.y o o 0
X paip e fioa-
da — 0
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Characteristic Equation

il

has a non-trivial solution only if {2 _ )jJ
does not have an inverse — which means the determinant vanishes
]2 Al \ )

The determinant is simply a quadratic polynomial which is the
characteristic equation of the system

a, —-A a _harlp?
(1 2 )=0 remember this? b=vb -4ac

2a
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Eigenvalues and Eigenvectors

The solutions of the characteristic equation are called eigenvalues of A

If the eigenvalues are not equal (A,# A,) then the solution of our original
system

~ (ceM e\ -
X = dl e | dz ot +X,,
1€ 2€
So, we only need to determine the ¢’s and d’s (the eigenvectors) to
determine the solution for the system of equations
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Solution in New Coordinates

To find the solution for X (i.e. find the ¢’s and d’s), we substitute in our
eigenvalue(s)

. 2, C1eM a a, CleM
AX'=AX' =

Mt Mt

A
5 [(©e N\ (a4 @) c,e™
2 M| It

Note: we must know the initial conditions to fully determine the ¢’s and
d’s
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Stability of Spirals

—bx+b*-4ac
2a
y Eigenvalues are a
d)/ 0 com_ple?( conju_gate pair:
dt equilibrium point is a
spiral point.

.
o
.
.t
.
.
.t
.t
.t
.

If the real part of the
eigenvalues are

negative, the point is
asymptotically stable

Otherwise, it's unstable

d%h: 0
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Stable Fixed Points are Sinks

—b=+/b* -4ac
2a

y Eigenvalues are both
X, d]/ 0 rt_aal and hgv_e the same
L/t sign: equilibrium point is

o e a node.

T e If the eigenvalues are

\ negative, the point is

‘‘‘‘‘‘‘‘ /‘ asymptotically stable
Otherwise, it’s unstable

dx/ _
vz
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Saddle Points are Stable & Unstable

—b=+b* -4ac
2a
y Eigenvalues are both
i real and have different
%Zt: 0 signs: equilibrium point is

......... a saddle point.
...... Saddle points are always
unstable

. d)/ -
@ =0
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@Purely Imaginary Eigenvalues
2a

y Eigenvalues are purely
imaginary: equilibrium
point is a center.

Centers are neutrally
stable, and the trajectory
around the equilibrium
point will be strictly
periodic oscillations

d%it: 0
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Non-linear Systems

However, for a general system

du

dw
—=F s —=G s
5 (u,w) 7 (u,w)

We can learn a lot about the equilibrium of the system by
studying the stability of the steady states (i.e. the
temporal equilibrium points):

du dw
—=0 —=0
dt dt
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Non-linear Systems

» We can solve for equilibrium points, but in this case we
have non-linear functions, so how do we determine the
eigenvalues?

...use the linear terms of the Taylor series expansion
around the equilibrium points " .

oF oF

d(u _ oul, owl, |(u
dr\w oG 0G w Matrix of first derivatives:
Jacobian matrix

ul, owl, L
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Example

» Consider a very simple Wilson-Cowan system of 2
neuron populations:

T dl;(tx) =-E(x)+g; [Im + Wy E(x) - WIEI('X):

dI(x)

7 =10+ g, [wa B ()] @
100P? § i

g(P) = —302+P2 for P=0
0 for P<0
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Spike Rates E (red) & | (blue)

Example (cont.)
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Phase Plane (blue arrows are trajectory directions)
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Limit cycles

* An oscillatory trajectory is a limit cycle if all trajectories
within a small region enclosing the oscillatory trajectory
are spirals

— If neighboring trajectories spiral towards the oscillatory trajectory,
then the limit cycle is asymptotically stable

— If they spiral away, the limit cycle is unstable

* Poincaré-Bendixon theorem:

— Suppose there is an annular region that contains no equilibrium
points and for which all trajectories that cross the boundary of
the annulus enter it

— Then, the annulus must contain at least one asymptotically
stable limit cycle
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One-Dimension
Eigenvalues (Characteristic Exponents) Determine Source/Sink
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Two-Dimensions
Imaginary Parts of Eigenvalues Determine Spirals

P )
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Two-Dimensions
Eigenvalues Determine the Geometry of Flows
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Great Graph of 2-d Linear Systems

general 2 x 2 matrix A = [g ﬂ with trace T'= a + d and determinant D} = ad — cb:
) VT2 —

det {a ; A d f }J = A —TX+ D=0, the solutions of which are: )\ = u

D | T = AJ + ).2

T? < 4D: Spiral. ..
A pair of complex eigenvalues D=M-%
Spiral Sinks Spiral Sources
o
T<0 T>0: 5

T°>4D >0and T <0
Two negative eigenvalues.
Sinks

>

T >4D>0and T >0
Two positive eigenvalues.
Sources

&
b

A
[

Saddles '\ /’

D < 0: Saddle. One real positive eigenvalue and one real negative eigenvalue.

Fraser's notes (2004)

08b_greatGraph.psd
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Structural Stability
Flow Geometry is Not Sensitive to Small Perturbations

09_StructStabil.psd

Bifurcations
Parameter Changes that Change Flow Geometry

-

A )

Saddle-node bifurcation
10_bifur.psd
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faddle-Hode Bifurcation
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X=—x°

y=-—y. A

11a_bifur_saddle-node.mov

Bifurcations

A

Parameter Changes that Change Flow Geometry

(igenv lues: eigenvalues:
o< A1>0 A2<0

- .:J: P / ' \ —
= - rod; - ‘\T raddle - -
NN / —~—

?genv ues
;;;;; " \ J v .\‘. - - - -~ i
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Saddle-node bifurcation
11b_saddleNode.psd
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12a_bhifur_saddle-nod*19D060._
Moo' | 4.2 MB

Folder not found
[-1z0]

12a_bifur_saddle-nod#19D060.mov

Supercritical Hopf

Bifurcation

x=y—x(x*+y* -,
=y

13a_bifur_hopf.mov
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Hopf bifurcation

13b_Hopf.psd

Bifurcations

Parameter Changes that Change Flow Geometry

Summary: Eigenvalues Determine Flow Geometries

Classify the Dynamics: 1. Find the fixed points.
2. Linearize near the fixed points.
3. Compute eigenvalues at fixed points.

15_summary.psd

4. Classify local stability.
5. Classify bifurcations.
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