SySc 512 – Quantitative Methods of Systems Science

Homework 6: Uncertainty.

- (1) A point process describes a series of events where the probability of an event at any time is constant. The random variable, τ , quantifies the time of an event.
 - (a) The inter-event density function is an exponential function:

$$P_{\tau}(t) = Re^{-Rt}$$
, where $t > 0$.

Compute the expectation, $\mathbf{E}\tau$, and variance, $\mathbf{D}\tau$ of the time until the first event. Graph $P_{\tau}(t)$ as a function of t and mark the mean and variance on the graph.

(b) The probability density function for the time between every n^{th} event is gamma distribution density:

$$P_{\tau}^{n}(t) = \frac{(nR)^{n}}{(n-1)!} t^{n-1} e^{-nRt},$$

where t > 0, and n is the number of events.

Compute the expectation, $\mathbf{E}\tau$, and variance, $\mathbf{D}\tau$ of the time until the third event.

Graph $P_{\tau}^{3}(t)$ as a function of t and mark the mean and variance on the graph. Hint: you will need the integral:

$$\int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx.$$

(2) The joint probability density of two random variables, ξ_1 and ξ_2 , is given by the bivariate Gaussian density function:

$$P_{\xi_1,\xi_2}(\hat{x}_1,\hat{x}_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\hat{x}_1^2 - 2\rho\hat{x}_1\hat{x}_2 + \hat{x}_2^2}{2(1-\rho^2)}\right],$$

where \hat{x}_i is the normalized variable, $\hat{x}_i = (x - \mathbf{E}\xi_i)/\sigma_i$, $\sigma_i = \mathbf{D}\xi_i$, and $\rho < 1$. Compute the marginal density function for ξ_1 , ie. $P_{\xi_1}(\hat{x}_1)$. Graph $P_{\xi_1,\xi_2}(\hat{x}_1, \hat{x}_2)$ and $P_{\xi_1}(\hat{x}_1)$ for $\rho = 0, 0.5$, and 0.9.

Using the marginal and the joint density function, compute $\mathbf{E}\xi_1$, $\mathbf{D}\xi_1$, and $\mathbf{E}[(\xi_1 - \mathbf{E}\xi_1)(\xi_2 - \mathbf{E}\xi_2)]$.