## SySc 512 - Quantitative Methods of Systems Science

Homework 4: Optimization.
(1) Verify the first and second order conditions for the local minima and maxima of the following functions:

$$
\begin{aligned}
f(x) & =x^{3}(1-x)^{2}(1+x) \\
F\left(x_{1}, x_{2}\right) & =x_{1}^{2}+2 x_{2}^{2}+2 a x_{1} x_{2}+b
\end{aligned}
$$

(2) For the function

$$
f(x)=x^{3} e^{-x^{2}}
$$

(a) Plot $f(x)$.
(b) Find all values of $x$ for which $f^{\prime}(x)=0$.
(c) For each zero $\hat{x}$ of $f^{\prime}$ :
(i) Give the value of $\hat{x}$.
(ii) Give the value of $f(\hat{x})$.
(iii) Determine if $\hat{x}$ is a local minimum, a local maximum, or neither.

You may want to use numerical (computer) methods for parts of this problem.
(3) American Airlines allows carry-on luggage for which the total outside dimensions of each bag is less than 45 inches, ie, $x+y+z<45^{\prime \prime}$. What is the largest volume bag that is allowed?
(4) Solve each of the following:

Minimize $\quad \frac{1}{2}\left(x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+4 x_{1}+5 x_{2}\right)$
Subject to $\quad x_{1}-x_{2}=2$
Minimize $\quad x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$
Subject to $x_{1}^{2}+4 x_{2}=2$

