## SySc 512 - Quantitative Methods of Systems Science

Homework 3: Linear Algebra Review. The purpose of this homework is to give you practice with linear algebra. Exercise 1 must be done by hand, and exercise 2 may be done by hand or you may use a numerical tool like Matlab.
(1) Perform the calculations each of the following matrices:

$$
\begin{array}{cc}
A_{1}=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
A_{3}=\left[\begin{array}{cc}
0.7 & -0.7 \\
0.7 & 0.7
\end{array}\right] \quad A_{4}=\left[\begin{array}{cc}
0.8 & 1.8 \\
0 & 1.25
\end{array}\right] .
\end{array}
$$

(a) For each matrix $A$ calculate:
(i) Trace.
(ii) Determinant.
(iii) Eigenvalues and eigenvectors.
(b) Diagonalize $A_{4}$, ie, find matrices $Q, Q^{-1}$, and $D$ such that $Q Q^{-1}=Q^{-1} Q=1 \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, $D$ is diagonal, and

$$
A_{4}=Q D Q^{-1}
$$

Explain the relationships amongst the columns of $Q$, the diagonal elements of $D$.
(2) Given that

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0 \\
3 & -1 & 2
\end{array}\right], B=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right], C=\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -1 \\
4 & 2 & 2
\end{array}\right],
$$

determine the following:
(a) $A+4 B C$
(b) The determinant of each matrix.
(c) The inverse of each matrix if it exists.
(d) $A^{3}$
(e) The eigenvalues and eigenvectors of B.

