SySc 512 - Quantitative Methods of Systems Science

Homework 2: Dynamical Systems: Linearization and Projection.

(1) Use the following variant of the van der Pol system for this problem:

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-x+\left(0.2-x^{2}\right) y
\end{aligned}
$$

(a) Writing the differential equation for a continuous time dynamical system

$$
\dot{\mathrm{x}}=F(\mathbf{x})
$$

where both \mathbf{x} and $F(\mathbf{x})$ are vectors, a point $\overline{\mathbf{x}}$ is called a fixed point or equilibrium if $F(\overline{\mathbf{x}})=0$. At each fixed point of the van der Pol systems find the matrix of partial derivatives with components

$$
A_{i, j}=\left.\frac{\partial(F(\mathbf{x}))_{i}}{\partial \mathbf{x}_{j}}\right|_{\mathbf{x}=\overline{\mathbf{x}}}
$$

(b) For each matrix in (1a) find the eigenvalues and eigenvectors.
(c) Let

$$
x(0)=\left[\begin{array}{l}
0.1 \\
0.1
\end{array}\right]
$$

and plot solution trajectories $\{x(t): t \in[0,25]\}$ for the two cases:

$$
\begin{aligned}
& \dot{x}=F(x) \text { Where } F \text { is given by the van der Pol equations } \\
& \dot{x}=A x \text { Where } A_{i, j}=\left.\frac{\partial(F(x))_{i}}{\partial x_{j}}\right|_{x=[0,0]^{T}}
\end{aligned}
$$

(2) Show that the one-parameter system

$$
\begin{aligned}
\dot{x} & =y+\mu x-x y^{2} \\
\dot{y} & =\mu y-x-y^{3}
\end{aligned}
$$

undergoes a Hopf bifurcation at $\mu_{0}=0$. Plot three phase portraits for $\mu<0, \mu=0$, and $\mu>0$.
(3) For the 3-d Rössler system plot the 3-dimensional phase portrait and 2-d projections of the attractors.

